STUDY OF MEMBRANE FATTY ACIDS OF GRAM-NEGATIVE BACTERIA AND ITS INFLUENCE TOWARDS THE TERRESTRIAL ECOSYSTEM

Main Article Content

Lali Lingfa
Nathiya T
CH. VK Prudhvi
Sharmila R
Deepa R
Anand Prem Rajan

Abstract

Membrane fatty acids being the fundamental components of gram-negative bacterial lipids contribute structural integrity, protection against the chemical and mechanical damage. Nature provides an enormous diversity in the composition of fatty acids to the different species of bacteria according to its habitat.Each bacterial species lives in different environment consist different grades and different types of fatty acid. With the help of some new and efficient analytical techniques the chemical complexity of fatty acid has been determined and it is now revealed that some polysaturated fatty acid, mono saturated fatty acids are found to be common amongst some groups of gram-negative bacteria. This review indicates the recent year research done on many aspects of gram negative bacterial fatty acids and their influence towards the ecosystem. Some fatty acids discussed here may potentially be used as an active agent for recognizing certain important bacterium species in ecosystems.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Lali Lingfa, Nathiya T, CH. VK Prudhvi, Sharmila R, Deepa R, Anand Prem Rajan. STUDY OF MEMBRANE FATTY ACIDS OF GRAM-NEGATIVE BACTERIA AND ITS INFLUENCE TOWARDS THE TERRESTRIAL ECOSYSTEM. IJPBCS [Internet]. 2015 Apr. 1 [cited 2025 Jan. 22];4(2):1-19. Available from: https://ijpbcs.com/index.php/ijpbcs/article/view/19
Section
Articles

How to Cite

1.
Lali Lingfa, Nathiya T, CH. VK Prudhvi, Sharmila R, Deepa R, Anand Prem Rajan. STUDY OF MEMBRANE FATTY ACIDS OF GRAM-NEGATIVE BACTERIA AND ITS INFLUENCE TOWARDS THE TERRESTRIAL ECOSYSTEM. IJPBCS [Internet]. 2015 Apr. 1 [cited 2025 Jan. 22];4(2):1-19. Available from: https://ijpbcs.com/index.php/ijpbcs/article/view/19

References

Jame Oliver O., and Rita Colwell. Extractable lipids of Gram-Negative Marine Bacteria: Fatty-Acid Composition. Systematic Biotechnology. 23 (1973) 442-458.

Dubois-BrissonnetF., MalgrangeC., Guerin-Mechin .L, Heyd .B and Leveau .J. Y. Effect of temperature and physiological state on fatty acid composition of Pseudomaonasaeuruginosa. Food microbiology. 55 (2000) 79-81.

Jiangwei.Y and Charles Rock .O. Phospholipid acid synthesis in bacteria. BiochimicaetBysiophysica Acta., 1831 (2013) 495-502.

Josef.E and Gerrad.L. Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid. Progress in Lipid Research. 54 (2014) 14-31.

Carol Fischer .L, Derek Blanchette .R, Kim Brogden .A, Deborah Dawson .V, David Drake .R, Jeniffer Hill .R, Philip Wertz .W. The role of cutaneous lipids in defense. BiochimitaetBiophysicaActa. 1841 (2014) 319-322.

Enrica .C, Elenora .M, Veleria .B, Massimiliano .G, Victoria .V, Stefania De .L. Pectin functionalized with natural fatty acids as antimicrobial agent. International Journel of biological Macromolecules. 68 (2014) 28-32.

David J. Sanabria-Ros, Yaritza – Torres, Gamalier Maldonado-Dominguez, Idializ Dominguez, Camille Rios, Damarith Diaz, Jose W. Rodriguez, Joanne S. Altieri-Rivera, Eddy Rios-Olivares, Gabriel Clinton, Nasblymonatno, Nestor M. Carbelleira. Antibacterial activity of 2-alkynoic fatty acids against multidrug resistant bacteria. Chemistry and Physics of Lipids. 178 (2014) 84-91.

MaitaneIbarguren, David J. Lopez, Pablo V. Escriba. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. BiochimicaetBiophysicaActa. 1838 (2014) 1518-1528.

Joshua B. Parsons, Charles O. Rock. Bacterial lipids: Metabolis and membrane homeostasis. Progress in Lipid Research. 52 (2013) 249-276.

William M. O’Leary. Fatty acid of bacteria. Bacteriol Rev. 26 (1962) 421-442.

Herbert .D. Chemical composition of micro-organism as function of their environment, Microbial Reaction to Enviroment. In G. G. Meynell and H. Gooder edition (1961) 391-416.

Knaysi .G. Chemistry of bacterial cell. Bacterial Physiology. In C. H. Werkman and P. W. Wilson edition (1951) 1-27.

Porter .J .R. The chemical composition of microorganisms. Bacterial chemistry and Physiology. John Willey and Sons, inc. (1946) 352-450.

Asselineau .J. Application of chromatotpgraphy to fatty acids. Chim .Anal. 39 (1957) 375-383.

Hofman .K, Henis .D .B and Panos .C. Fatty acid interconversion in lacto bacilli. J. Biol. Chem. 228 (1957) 349- 355.

James .A .T and Martin .J .P. The separation of and identification of saturated and unsaturated unsaturated fatty acids formic acids to n- Octadecanoic acids. Gas Liquid Chromatography. 63 (1956) 144-152.

Goldfine .H and Bloch .K. On the origin of unsaturated fatty acids in Closridia. J. Biol. Chme. 236 (1961) 2596-2601.

Asselneu .J, and Lederer .E. Chemistry and metabolism of bacterial lipids. Lipid metabolism. In Bloch .K edition. (1960) 337-406.

Gabarev .E .M, Lubenets E. K. Kanchukh A. A, and Galarev .Y .V. Fractionation and composition of lipid fraction of diphtheria bacteria. Biochimya 16 (1958) 139-145.

Akashi .S, and Saito .K. A branched saturated C15 acid (sarcinic acid) from Sarcinaphospholipids and similar acids from several microbial lipids. J. Biochem. 47 (1960) 222-229.

Alimova .E .K. The distribution of lipids between the cell membrane and other components parts of the cell in diphtheria microbes. Biochemistry (U. S. S. R). 23 (1960) 193-198.

Asano .M and Takahasi .H. Bacterium components of Corynobacterium diphtheria. I. Studies of fats. J. Pharm. Soc. 65 (1945) 17-19.

Asselineau .J. Sur queleques application de la chromatogarphie en phase gas bacteriens. Ann. Inst. Pasteur. 100 (1961) 109- 119.

Hausmann .W and Craig .C .L. Polymyxin B1: fractionation, molecular weight determination, amino acid and fatty acid composition. J. Am. Chem. Soc. 76 (1954) 4892-4896.

Allen Marr G and John L. Ingraham. Effects of temperature on the composition of fatty acids in Escherichia coli, J. Bacteriol 84 (1962) 1260-1267.

Saito .K. Chromatogarphic studies on bacterial fatty acids. J. Biochem. 47 (1960) 699-709.

Saito .K, Studies on bacterial fatty acids; the structure of subtilpendetadecanoic and subtilohepdetadecanoic acids. J. Biochem. 47 (1960) 710-719.

Miller L. T. Single derivatization method for routine analysis of bacteria whole-cell fatty acid esters, including hydroxy acids. Journal of Clinical Microbilogy 16 (1982) 584-586.

Forsyth .W .G .C, Hayward .A .C and Robert .J .B. Occurance of poly –β- hydroxybutyrc acid in aerobic gram negative bacteria. Nature. 182 (1958) 800-801.

Lemoigne .M, Delaporte .B and Croson .M. Contribtion a I’etudebotaniqueetbiochimique des bacteriens du genre Bacillus. Ann. Ints. Pasteur. 70 (1944) 224-233.

Weibull .C. the lipids of a lysozyme sensitive Bacillus species. Acta chem. Sacnd. 11 (1957) 881-892.

Law .J .H. Lipids of Escherichia coli. Bacteriol. Proc (1961) 126.

Cartwright .N .J. The structure of serratamic acid. Biochem .J. 67 (1957) 663-669.

Crowder .J .A and Anderson .R .J. A contribution to the chemistry of Lactobacillus acidophilllus. III. The composition of phosphatide fraction. J. Biol. Chem. 250 (1960) 487-495.

Myron Sasser. Indentification f bacteria by Gas chromatography of cellular fatty acids. MIDI.Technical Note 101 (2001).

Hof,ann .K, Henis .D .B and Panos . The estimation of fatty acids inter conversion into lactobacilli. J. Biol. Chem. 217 (1955) 49-60.

Hofmann .K, and Taousic .F. On the identity of phytomonic and lactobacilllic acids. A reinvestigation of fatty acid spectrum of Agrobacterium tumefaciens. J. Biol. Chem. 213 (1955) 425-432.

O’Leary .W .M. Involvement of methionine in bacteria lipid synthesis. J.Bacteriol. 78 (1959) 709-723.

Goldfine .H. Fatty acid metabolism in closteridiumbutiricum. Federation proc. 20 (1961) 273.

Hofmann .K, Hsio .C .Y, Henis .D .B and Panos .C. The estimation of fatty acid composition of bacterial lipids. J. Biol. Chem. 217 (1955) 49-60.

Hofmann .K, and Tausig .F. The chemical nature of fatty acids a group C Streptococcus species. J. Biol. Chem. 213 (1955) 415-423.

Hofmann .K and Sax .S .M. The chemical nature of the fatty acids of Lactobacillus casei. J. Biol. Chem. 205 (1953) 55-63

Hofmann .K, Lucas .R .A and Sax .S .M. The chemical nature of fatty acid of Lactobacillus arabinosus. J. Biol. Chem. 195 (1952) 473-485.

Dauchy .S and Asselineau .J. Sur les acides lipids de Escherichia coli.Existence d’ unacide C17H32O32 contenant un cycle propanique. Compt. Rend. 250 (1960) 2635-2637.

Hofmann .K, O’Leary .W .M, Yoho .C .W and Liu .T .Y. Further observation of lipids stimulation of bacterial growth. J. Biol. Chem. 234 (1959) 1672-1677.

Richard Levin .A. Fatty acid of ThiobacillusThiooxidans.Journel of Bacteiology. 108 (1971) 992-995.

Cory Lytle .A, Mark Fuller .E, Ying Dong Gan .M, Aaron Peacock, MaryDeFlaun .F, TullisOnstott .C and David White .C. Utility of hig performance liquid chromatography/electrospray/mass spectrometry of polar lipids in specifically Per-13 C labeled Gram – negative DA001 as a tracer for accelation of bioremediation in the surface. Journal of Microbiological Methods. 44 (2001) 271-281.

Mark Teece .A, Marilyn Fogel .L, Michael Dollhopf .E and KennetNealson .H. Isotopic fractionation associated with biosynthesis of fatty acid by a marine bacterium under oxic and anoxic conditions. Organic Geochemistry. 30 (1999) 1571-1579.

StanislavBatrackov .G, Denis Nikitin .I, Vladimir Sheichenko .I, AlexandrRuzhitsky .O. A novel sulfonic-acid analogue of cermide is major extractable lipids of gram-negative marine bacterium Cyclobacteriummarinus WH. Biochimicaet Biophysical Acta 1391 (1998) 79-91.

Anders Kussak and Andrej Weintraub. Quadrupole ion-trap mass spectrophotometry to locate fatty acids on lipids A from Gram-negative bacteria. Analytical Biochemistry. 307 (2002) 131-137.

Ivan Sondi and BrankaSalopek –Sondi. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram negative bacteria.Jornal o colloid and interface science 275 (2004) 177-182.

Byappanahalli .M .N and Fujioka .R .S. Evidence that tropical soil environment can support the growth of Escherichia coli. Water Science and Technology. 38 (1998) 171-174.

Mollie WindfieldD, and Eduardo Groisman A. Role of NonhostEnviroments in the Lifestyles of Salmonella and Escherichia coli. Apllied and Enviromental Microbiology 69 (2003) 3687-3694.

RolaJadallah and Nasser Sholi. Isolation and detedtion of Agrobacterium tumefaciensfrom soil. Natural science 14 (2012) 77-84.

Marcel de Groot .J .A, Paul Bundock, Paul Hooykaas .J .J and Alice Beijersbergen G .M. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology. 16 (1998) 839-842.

Van Larebeke N, Engler G, Hostlers M, Van Den Elsacker S, Zaenen I, Schilperoort and Schell J. Large plid in agrobacterium tumefaciens essential for gall –inducing ility. Nature 252 (1974)169-170.

Hoekema .A, Hirsch .P .R, Hooykaas .J .J .P and Schilproort .R .A. Nature. 303 (1983) 179-180.

LinedaAitTayeb, Martine Lefevre, VirginePasset, Laure Diancourt, Sylvain Brisse and Patrick Grimont A. D. Comparative phylogenies of Burkholderia, Ralstonia, Comamnas, Brevundimonasand realated organisms derived from rpoB, gyrBand rrsgene sequences. Research in Microbiology 159 (2008) 169-177.

Shengnan Shi, Xuwang Zhang, Fang Ma, Tieheng sun, Ang Li and Jiti Zhou. Cometabolic degradation of dibenzofuran by Comamonassp. MQ. Process Biochemistry 48 (2013) 1553-1558.

Nishanth Kumar S, Moahandas C, BalaNambisan. Purification, structural elucidation and bioactivity of tryptophan containing diketopiperazines, from Comamonas testosterone associated with a rhabditidentomopathogenenic nematode against major human-pathogenic bacteria. Peptides 53 (2014) 48-58.

Tung-Li Tsui, Shih-Ming Tsao, Ken-Sen Liu, Tzy-Yen Chen, Ya-lin Wang, Ying-Hock Teng and Yuan-Ti Lee. ComamonasTestosteroniinfection in Taiwan: Reported two cases and literature review. Journal of Microbiology, Imminology and Infection 44 (2011) 67-71.

Wei Ji, Yuanan Chen, Hao Zhang, Ziyi Li and Yuanhua Yu. Cloning, expression and characterization of a putative 7alpha-hydroxysteroid dehydrogenase in Comamonas testosterone. Microbiological Research 169 (2014) 148-154.

Alessandro Carmona-Martinez A, Falk Hanisch, Ute Kuhlicke and Thomas Neu R. Electron transfer and biofilm formation of Shewanellaputrefaciens as function of anode potential. Bioelectrochemistry 93 (2013) 23-29.

ZeynepAydinSinirlioglu, DenizSinirlioglu and FahriAkbas. Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from ShewanellaPutrefaciensand using Malachite green decolorization. Bioresource Technology 146 (2013) 807-811.

Ellen Martin Taratus, Sean G. Eubanks, Thomas J. DiChristina. Design and application of a rapid screening technique for isolation of selenite reduction-deficient mutants of Shewanellaputrefaciens. Microbiol,Res. 155 (2000)79-85.

Lopez-Caballero M. E, Sanchez-Fernandez J .A, Moral A. Growth and metabolic activity of Shewanellaputrefaciensmaintained under different CO2 and O2 concentrations. International Journelof Food Microbiology 64 (2001) 277-287.

Yan Qiao, Xiao-Shuai Wu and Chang Ming Li. Interfacial Electron transfer of Shewanellaputrefaciens Enhanced by Nanoflaky Nickel Oxide Array in Microbial Fuel cells, Journel of Power source, doi: 10. 1016/jpowsour 2014. 05. 015.

SungjunBae, Yoonhwa Lee, man Jae Kwon, Woojin Lee. Riboflavin – mediated putrefaciens CN32 and Lepidocracite. Journal of Hazardous Materials 274 (2014) 24-31.

JeetVaria C, Susana Silva Martinez, Sharon Velasquez-Orta and Steve Bull. ElectrochimicaActa 115 (2014) 344-351.

Caccavo F. Jr, Lonergan D. J, Lovley D. R, Davis M, Stolz J. F and Mclnerney M. J. Geobactersulfurreducens sp. Nov., Hydrogen-and acetate-Oxidizing dissimilatory metal-reducing microorganism. Appl, Environ, Microbiol, 60 (1994) 3752-3759.

Masuda M, Freguia S, Y-F Wang, Tsujimura S and Kano K. Flavin contained in yeast extract are exploted for anodic electron transfer buLactococcuslactis, Bio-electrochemistry 78 (2010) 173 – 175.

Malvankar N. S, Vargas M, Nelvin K. P, Frank A. E, Leang C, Kim B-C, Mester T, Covalla S. F. Johnson J. P, Rotello V, M, Tuominen M. T, Lovley D. R, Tunabel metallic-likeconductivity in microbial nanowire networks, Nat. Nanotechnology 6 (2011) 573-579.

Inoue K, Leang C, Frank A. E, Woodard T. L, Nevin K.P, Lovley D. R. Specfic localization of the c-type cytochrome omcZ at the anode surface in current-producing biofilm ofGeobacterSulfurreducens. Enviro, Microbiol, Rep 3 (

Reguera G, McCartthy K. D, Mehta T, Nicoll J. S, Tuominen M. T and Lovley D. R. Extraction of cellular electron transfer via microbial nanowires. Nature 435 (2005) 1098-1101.

El-Nagger M. Y, WangerM .Y, Leung. T. D, Yuzvinsky T. D, Southam G, Yang G, Lau W. M, Nealson K. H, Gorby Y. A. Electrical transport along bacterial nanowires from Shewanellaoneidensis MR-1, Proc, Natl. Acad. Sci. 107 (2010) 18127-18131.

Rabaey K, Angenent L, Schroder U and Keller J. Bioelectrochemical systems: from Extracellular Electron Transfer to Biotechnological application. IWA Publishing, London 2010.

Rabaey K, Rozendal R. A. Microbial electrosynthesi-revisiting the ecletrical route for microbial production. Na. Rev. Microbiol. 8(2010) 706 – 716.

Hernandez M. E, Newman D. K. Extracellualar electron transfer, cell. Mol. Life sci 58 (2001) 1562-1571.

Watanabe K, Manefield M, Lee M, Kouzuma A. Electron shuttles in biotechnology. Curr. Opin. Biotechnol 20 (2009) 633-641.

Schroder U. Discover the possibilities: microbial bioeclectrochemical system and the revival of 100-year-old discovery. J. Solid State Electrochem 15 (2011) 1481-1486.

Ducommun R, Favre M-F, Carrad D, Fisher F. Outward electron transfer by Saccharomyces cervisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor, yeast 27 (2010) 139-148.

Raj H. D and Paveglio K. A. Contributing carbohydrates catabolic pathways in Cyclobacteriummarinus.Journal of Bacteriology. 153 (1983) 335-339.

Raj H. D. Microcylusand realated ring-forming bacteria. Crit. Rev. Microbiol. 5 (1977) 243-269.

Raj H. D. The genus Microcyclus and related bacteria. Springer-Verlag Inc., New York (1981) 630- 644.

Raj H. D. A new species –MicrocylusMarinus. Int. J. syst. Bacterion 26 (1967) 528-544.

Sieburth J. M, Pratt H. L, Johnson P. W and Scales D. Microbiol Seascapes- a pictorial assay of marine microorganisms and their enviroments. Univerity Park Press, Baltimore. 1975.

Cotter R. J, Honovich J, Qureshi N, Takayama K. Structural determination of lipids A from Gram-Negative bacteria using laser desorption mass spectrometry, Biomed. Environ. Mass spectrum. 14 (1987) 591-598.

Aussel L, Brisson J. R, Perry M. B and Caroff M. Structure of the lipid A of BordetellahinziiATCC51730, Rapid column. Mass Spectrom 14 (2000) 595-599.

Gloria Tetteh L and Larry BeuchatR.Survival, growth, and inactivation of acid – stressed Shigellaflexnerias affected by pH and temperature. International Journa; of Food Microbiology 87 (2003) 131-138.

XingQing .Z, Rucheng .W, XiangCai .L, Jianjun .L, ChengXiang .L and Juan .L. Bioleaching of chalcopyrite by Acidithiobacillusferroxidans. Minerals Engineering. 53 (2013) 184-192.

Crundwell .F.K. How do bacteria interact with minerals? Hydrometallurgy. 73 (2003) 75-81.

Wiertz .J .V, Pedro Moya, Angel Sanhueza, Tomas Vargas. Influence of substrate polarization on activity of Thiobacillusferrooxidans in bioleaching. Hydrometallurgy. 94 (1994) 395-405.

Dong –Jin K., Debrata P., Kyung-Ho P., Jong-Gwan A., and Seoung-Won L. Effect of pH and Temerature on Iron Oxidation by Mesophilic Mixed Iron oxidizing Microflora, 49 (2008) 2389-2393.

Marlen .B, Eugenia .J, and David Holmes .S. Identification of a gene cluster for the Formation of Extracellular Precursors in ChemolithoautotrophAcidithiobacillusferrooxidans, Appl Environ Microbiol.,71 (2005) 2902-2909.

Barbara .V, Miao .C, Russell Crawford .J and Elena Ivanova .P. Bacterial ExtracellualarPollysaccharides Involved in Biofilm Formation. Molecules. 14 (2009) 2535-2554.

Renukadevi K.P., Angyarkanni J., Karunakaran J.G. Extraction and characterization of lipopolysaccharides from serratiarubidaea and its cytotoxicity on lungs cancer cell line –NCL-H69, 2 (2012) 2067-3809.

Williamson D. H, and Wilkinson J. F. The siolation and estimation of the poly-β-hydroxybutyrateinclussion of Bacillus species. J. Gen. Microbiol. 19 (1959) 198-209.

Smithies W. R, Gibbons N. E and Bailey S. T. The chemical composition of the cell and cell wall of some halophilic bacteria. Can. J. Microbiol 1 (1955) 605-613.

Bergstorm S, Theorell S. H, and Divide H. Pyolipid acid, a metabolic product of Pseudomonas Pyocyanea, active against Myobacterium tuberculosis. Arch. Biochem. 10 (1946) 165-166.

Hofmann. K, Jucker. W, Miller W. R, Young A. C and Tousig F. On the structure of lactobacillic acid. J. A. Chem. Soc. 76 (1954) 1799-1804.

Hofmann K, Marco G. J, and Jeffrey G. A. Studies on structure of lactobacillic acid. III. Position of the cyclopropane ring. J. Am. Chme. Soc 80 (1958)1672-1677.

Hofmann K, and Orochena S. F and Yoho C. W. An equivocal synthesis of DL –cis-9, 10-methyleneoctadecanoic acid (dihydrosterculic acid) and DL-cis-11, 12-Soc. 79 (1957) 3608.

Hofmann K and Panos C. The biotin-like activity of lactobacillic acid and related compounds. J. Biol. Chem. Soc210 (1954) 687-693.

Goldfine H and Bloch K. On the origin of unsaturated fatty acid in Clostridia. J. Biol. Chem. 236 (1961) 2596-2602.

Hofmann K and Panos C. The chemical nature of fatty acids of lactobacillus casie. J. Biol .Chem 205 (1953) 55-63.

Gubarev E. M, Bolgova G. D and Alimova E. A study of free lipids bound faction of The Brucelltype suis44 by methods of chromatography. Biochemistry (U. S. S. R) 24 (1959) 185-289.

Renukadevi K.P., Angyarkanni J., Karunakaran J.G. Extraction and characterization of lipopolysaccharides from serratiarubidaea and its cytotoxicity on lungs cancer cell line –NCL-H69, 2 (2012) 2067-3809.

LemoigneM, and Girard H. Reserve lipidique β-hydroxybutyriques. Comt. Rend 217 (1943)557-559.

Hnry Lutz Ehrlich,Geomicrobiology, 2nd edition 1990.

Olga Nedashkovskaya,Seung Bum Kim, MyungSookLee,MyungSoo Park, Kang Kyun Lee, Anatoly Lysenko M, Hyun Woo Oh, Valery Mikhailov V and Kyung Sook Bae. Cyclobacter iumamurskyense sp. Nov., a novel marine bacterium isolated from sea water. International journel of Systematic and Evolutionary Microbiology. 55 (2005) 2391-2394.

Ying J.-Y , Wang B.-J., Yang S.-S, and Liu S.-J. Cyclobacteriumlianum sp. nov., a marine bacterium isolated from sediment of an oilfield in the south china a, and embeded description of the genus Cyclobacterium. 56 (2014)2927-2930.

Liza Gross. Cultivating Bacteria’s Taste for Toxic waste. Biology. Doi:10.1371/jurnal.pbio.0040282.